

Advancing Infrastructure Resilience in Washington's State Parks

APWA Washington Spring Conference 2024

Outline

- Project Background
- 2 Approach

4

6

- 3 Key Findings
 - Adaptation Strategies
- 5 Screening Tool
 - Lessons Learned

Project Background

Flooding currently impacts infrastructure

Erosion currently impacts infrastructure

State parks have a lot of infrastructure

93 coastal properties

74 with infrastructure

52 with on-site visit

This project builds on previous work

WASHINGTON STATE PARKS ADAPATION PLAN

June 2019

Prepared by The University of Washington, Climate Impacts Group

In Partnership with The Washington State Parks and Recreation Commission

Washington State Parks Climate Resiliency Framework

1	2	3	4
Authorization	Adaptation	Mitigation	Education
Mainstream climate resiliency	Prepare parks for current and	Reduce greenhouse gas	Foster climate change
into existing policies &	future climate change	emissions and energy	awareness and culture of
practices	conditions	consumption	inclusion

Building capacity to prepare for, adapt to, and recover from current and future climate-related impacts

Washington State Parks Climate Resiliency Framework

1	2	3	4
Authorization	Adaptation	Mitigation	Education
Mainstream climate resiliency	Prepare parks for current and	Reduce greenhouse gas	Foster climate change
into existing policies &	future climate change	emissions and energy	awareness and culture of
practices	conditions	consumption	inclusion

Building capacity to prepare for, adapt to, and recover from current and future climate-related impacts

Sea level rise vulnerability assessment for coastal infrastructure

Prepared by The University of Washington Climate Impacts Group In partnership with The Washington State Parks and Recreation Commission

WASHINGTON STATE PARKS ADAPATION PLAN

June 2019

Prepared by The University of Washington, Climate Impacts Group In Partnership with

The Washington State Parks and Recreation Commission

Washington State Parks and Recreation Commission

Coastal Facilities Vulnerability Assessment: Implications for Sea Level Rise and Coastal Hazard Planning

HERRERA

STATE DADKS

Washington State Parks Climate Adaptation Framework

Policy context for vulnerability assessments

Steps and Pathways to Integrate Resilience into Comprehensive Plan

Coastal Infrastructure Vulnerability Assessment Approach

Vulnerability assessment approach

1. Identify Coastal Infrastructure

2. Assess and Map Exposure

Sea level rise does not act alone

Erosion rates are linked with sea level rise rates

Consider different likelihoods and timeframes

Inundation

50% likelihood by 2050	Sea level rise about MHHW (RCP 8.5) + 20-year high water event
50% likelihood by 2050, with waves.	Sea level rise about MHHW (RCP 8.5) + 20-year high water event + waves
1% likelihood by 2050	Sea level rise about MHHW (RCP 8.5) + 20-year high water event
1% likelihood by 2050, with waves	Sea level rise about MHHW (RCP 8.5) + 20-year high water event +waves
Compound flooding	FEMA 100-year base flood elevation (coastal, riverine, and surface)

Erosion

High confidence bluff erosion	Puget Sound minimum long-term bluff recession rate	
Intermediate confidence bluff erosion	Puget Sound median long-term bluff recession rate Pacific Coast shoreline change rate	
Low confidence bluff erosion	Puget Sound maximum long-term bluff recession rate	

Map and score exposure

3. Assess Sensitivity

Consider the impact of damaged infrastructure

If this infrastructure was exposed, how big of an impact would it have on:

- Human health and safety?
- The environment?
- Park operations?

Less sensitive

More sensitive

- Temporary structures
- Nonhazardous storage
- Trails

- Administrative buildings
- Docks and piers
- Roofed accommodations

- Evacuation routes
- Sewage/ wastewater utilities
- Shore protection

Map and score sensitivity

4. Score Vulnerability

Exposure

Overlay exposure and sensitivity

Exposure + sensitivity = vulnerability

Vulnerability

Key Findings

Many facilities are currently exposed

More facilities will be exposed in the future

Inundation AND erosion will both be hazards

Roads and utilities will be especially vulnerable

Adaptation Strategies

Evaluate Adaptation Options

Evaluate Adaptation Options

No Action - rocky shore

No Action – coastal bluff

No Action – barrier beach

No Action – armored beach

Evaluate Adaptation Options

Make Space – move away from the water

Make Space – move away from the bluff crest

Evaluate Adaptation Options

Adapt in Place – restore areas

Adapt in Place – elevate structures

Adapt in Place – replace function

Evaluate Adaptation Options

Delay – beach nourishment

Adaptation strategies can be paired

Screening Tool

Dashboard GIS tool

Explore park-specific data and maps

Explore infrastructure-specific details

Lessons Learned

- This is not an emerging issue. Coastal facilities are already being impacted by sea level rise annually.
- Proactive action is needed in the nearterm. If not, infrastructure is likely to become more vulnerable.
- Future assessments will need to consider other assets, such as cultural and natural resources.

Thank You.

George Ritchotte gritchotte@herrerainc.com

Rachel Johnson rjohnson@herrerainc.com