Climate Mitigation vs. Asset Management – and Funding? April 10, 2024

SÄZÄN GROUP

Tom Marseille, PE, Hon AIA, LEED Fellow Managing Principal

Dan Tedrow, PE, PMP Principal

Your Presenters

Principal, Building Life Cycle ∩n+imization

Managing Principal

Tom Marseille, P.E., Hon AIA, LEED Fellow

Learning Objectives

After the completion of the course, participants should be able to:

- 1. Participants will be able to better identify areas of organizational risk with regards compliance with Washington State climate mitigation regulations.
- 2. Participants will gain tools to help them identify opportunities to better align the seeming conflict between an effective asset management plan with condition-based capital asset renewal planning and mandates that seemingly require early replacement of energy systems.
- 3. Participants will be equipped with the latest information on available incentives and grant funding sources and Inflation Reduction Act Direct/Elective Pay opportunities that can help their organizations develop and strategize implementation of climate compliance mitigation plans.

POLICY OVERVIEW | What is Driving WA State Policies

Transportation – 44.7 million metric tons (MMT)

- Cars and trucks -
- Shipping
- Aviation -
- Marine transport

Residential, commercial and industrial heating – 23.3 MMT

- Natural gas and oil used in residential and commercial space heating
- Natural gas, oil and coal used in industrial heating applications

Electricity - 16.2 MMT

Natural gas, coal and oil used for electricity generation

Other – 15.4 MMT

- Agriculture
- Industrial operations (cement, aluminum, HFCs) ----
- Waste management (landfills, wastewater) -
- Natural gas distribution -

Residential. Commercial, Industrial heating

POLICY OVERVIEW | ELECTRIFICATION AND DECARBONIZATION

POLICY OVERVIEW | ELECTRIFICATION AND DECARBONIZATION

POLICY OVERVIEW | State Greenhouse Gas Emissions Reduction Target

 Carbon Emissions Reductions Goal by 2050 compared to 1990 levels

100%

POLICY OVERVIEW | Net Zero Ready Goal

- RCW 19.27a.160 (2009)
 - Our state is the only state with energy code improvements requirements in statute.
 - Net Zero ready by year 2031!

Washington State Energy Code

2031

Target 70% Reduction by year 2031

Incremental Improvement Compared to Targets

Energy Use Index (2006 Base)

2024	2027	2030
48%	39%	30%
41%	35%	30%

2021 Washington State Energy Code

.

.

0

POLICY OVERVIEW | WSEC – Heat Pumps, Heat Pumps, Heat Pumps!

POLICY OVERVIEW | WSEC - Active Load Management

	Occupancy Group							
Measure Title	Group R-1	Group R-2	Group B	Group E	Group M	All Other		
1. Lighting load management	12	15	27	15	NA	NA		
2. HVAC load management	29	24	42	23	13	26		
3. Automated shading	NA	7	12	16	NA	NA		
4. Electric energy storage	41	50	126	72	37	65		
5. Cooling energy storage	13	10	14	19	NA	14		
6. Service hot water energy storage	31	248	59	8	5	70		
7. Building thermal mass	NA	NA	50	95	96	80		

Washington State Clean **Building Performance** Standard (AKA Clean Building Act)

.

POLICY OVERVIEW | WA CBPS

- Provides operational energy performance requirements for new and existing buildings
- Applies to buildings over 50,000 sf (aka Tier 1 buildings)
- Sets Energy Use Intensity Targets based on Building Type
- HB5722 expanded CBA to include buildings between 20,000 sf to 50,000 sf (aka Tier 2 buildings): reporting only, not required to meet energy targets for the first compliance cycle

POLICY OVERVIEW | WA CBPS – Tier 1 Compliance Timeline

You are here!

...And every 5 years thereafter

POLICY OVERVIEW | WA CBPS – Tier 1 Penalties for Non-Compliance

- \$ 5,000 + \$ 1/sf.yr up to 18 months of accrued penalty
- For a 50,000 sf building, max penalty \$ 80,000
- For a 250,000 sf building, max penalty \$380,000

\$\$\$\$

POLICY OVERVIEW | WA CBPS Compliance Paths

Meet the EUI target

Investment Criteria

POLICY OVERVIEW | WA CBPS – Strategy for Existing Buildings that Exceed Target Today

- Benchmark performance now so you understand if there is a problem, and extent ٠
- Perform informal audits and create a plan for interventions •
- Factor in Owner Plans for facility additions, major renovations, change of program •
- Implement interventions now, ahead of performance period ٠
- Achieve target EUI, streamlining future compliance hoop jumping ullet
- Benefits: Lower soft costs (e.g. avoid formal Level II audits), more time to plan ۲

POLICY OVERVIEW | WA CBPS – Strategy for Existing Buildings that Exceed Target Today

EEM	EEM Brief Description	Annual Electricity Savings [kWh]	Annual Natural Gas Savings [Therms]	I	EUI Reduction [kBtu/sf.yr]	ļ	Annual Utility Savings [\$]	Ar	nnual Electricity Savings [\$]	Annual Gas Savin [\$]	gs	ROM COST [\$]
	Replace AHU-1 & AHU-2 DX Cooling Coils											
EEM-01	with Modern Equivalent	49,276			2.6	\$	3,745	\$	3,745	\$-		\$ 1,700,000
EEM-02	RCx AHUs and Boiler Plant	29,408	684		2.6	\$	2,776	\$	2,235	\$ 54	1	\$ 5,000
	Multizone AHU Controls and Sequencing											
EEM-03	Upgrade	58,150	8,716		9.0	\$	11,305	\$	4,419	\$ 6,88	36	\$ 50,000
EEM-04	Replace Chillers Add Heat Recovery	31,283	5,811		5.8	\$	6,968	\$	2,378	\$ 4,59)1	\$ 2,500,000
	RCx CHW System and improve AHU-5											
EEM-05	Cooling	16,169			0.5	\$	1,229	\$	1,229	\$-		\$ 7,500
EEM-06	Optimize Kitchen HVAC	18,141			0.5	\$	1,379	\$	1,379	\$-		\$ 50,000
EEM-07	RCx Heating System	519	1,453		1.2	\$	1,187	\$	39	\$ 1,14	18	\$ 60,000
EEM-08	Rooftop Photovoltaic	913,200			11.3	\$	69,403	\$	69,403	\$-		\$ 1,950,000
EEM-09	Central Chilled Water System	473,380			5.9	\$	35,977	\$	35,977	\$-		\$ 2,000,000
EEM-10	Heat pump conversion	(2,287,761)	138,599		22.0	\$	(64,377)	\$	(173,870)	\$ 109,49)3	\$ 8,000,000
EEM-11	Controls Modernization	539,311	20,790		14.2	\$	57,412	\$	40,988	\$ 16,42	24	\$ 2,700,000
EEM-12	Facility Wide Lighting Upgrades - Interior	422,705	(4,158)		3.7	\$	28,841	\$	32,126	\$ (3,28	35)	\$ 400,000
EEM-12	Facility Wide Lighting Upgrades - Exterior	31,703			0.4	\$	2,409	\$	2,409	\$-		\$ 50,000
EEM-16	Existing Controls Optimization	359,541	13,860		9.5		38,274.4		27,325.1	10,949	.3	\$ 50,000
EEM-13	AHU-1 Modernization and Controls upgrade	112,703	3,519		8.1	\$	11,346	\$	8,565	\$ 2,78	30	\$ 1,958,589
EEM-14	AHU-2 Replacement	90,565	3,519		7.3	\$	9,663	\$	6,883	\$ 2,78	30	\$ 1,640,000
EEM-15	Replace Chillers	114,808			4.2	\$	8,725	\$	8,725	\$-		\$ 750,000
		961,424	201,575		115.8	\$	232,313	\$	73,068	\$ 159,24	15	\$ 24,871,089

POLICY OVERVIEW | WA CBPS Compliance Paths

Meet the EUI target

Investment Criteria

POLICY OVERVIEW | WA CBPS Investment Criteria with EUI

- Conduct Level II Energy Audit
- Identify EEMs
- Implement Cost Effective EEMs
- Benchmark after 12 months
- Conduct M&V (within 15 months)
- If 75% of projected savings in the audit not met, implement additional EEMs
- Benchmark after 12 months
-repeat until 75% project savings are met
- or assess penalty

POLICY OVERVIEW | WA CBPS Investment Criteria without EUI

- Conduct Level II Energy Audit
- Identify EEMs
- Implement Cost Effective EEMs
- Benchmark after 12 months
- Conduct M&V (within 15 months)
- If 75% of projected savings in the audit are met
- Conduct Commissioning
- Correct Performance issues, if identified
- Submit forms

Early Adopter Incentive Program

RCW 19.27A.220, State energy performance standard Early Adopter Incentive program began July 1, 2021 and applies to nonresidential, hotel, motel and dormitory buildings greater than 50,000 sq. ft. An eligible building owner that demonstrates early compliance with the Clean Buildings Standard may receive a one-time base incentive payment of \$.85 per gross square foot of floor area, excluding parking, unconditioned, or semi-conditioned spaces. Incentive funds are limited to \$75 million.

HB 1976 – Increase Early Adopter Incentives

- Authorizes Commerce to provide greater incentive payments to building owners and include both Tier 1 and Tier 2 buildings
- If signed by Governor, goes into effect on June 6, 2024
- **BUT**, no fiscal appropriation is as yet tied to bill

Additional State and Local -Policies

0

.

POLICY OVERVIEW | Other WA State Bills Tied to Clean Energy Transition

HB 1216 - Climate Commitment Act

Establishes a cap and invest program for greenhouse gas emissions.

Cap is set as an annual allowance budget that declines and limits emissions. Emitters of 25,000 tons annually of carbon dioxide must comply by lowering emissions allowances or offset credits

The first auction raised > \$1B

Directs revenues to CERA account (clean transportation projects/programs) & CIA (other low-carbon economy projects – grants!)

HB 2405 – C-PACER

Authorizes a capital provider (private entity) to provide financing (loans) for qualifying capital improvements such as energy efficiency and renewable energy, repaid as property assessments

HB 1390 – District Energy Systems

Provides CBPS compliance pathway for buildings served by district energy systems Requires campus district energy system owners to develop a 15-year decarbonization plan

HB 1589 - 2023-24

Specifically requires PSE to speed shift toward clean (non fossil fuel) energy sources 80% by 2030

100% by 2045

or higher natural gas rates in near term

buying

Account

POLICY OVERVIEW | Seattle Building Emissions Performance Standard

Initial BEPS Deadlines (First Two Compliance Intervals)				
By October 1 st of	Verify &	Meet		
Year Listed	Report ¹	Target		
>220,001 SF	2027	2031		
90,001 to 220,000 SF	2027	2032		
50,001 to 90,000 SF ²	2028	2033		
30,001 to 50,000 SF	2029	2034		
20,001 to 30,000 SF	2030	2035		
1 - Verification & reportin	g also required .	2031-35 and		

on-going for subsequent intervals.

2 - Campus. portfolios and connected buildinas due.

2022 - 2026	2027 - 2030	2031 - 2035	2036 - 2040	2041 - 20		
Policy/Program	Verify Energy and Emissions	Nonresidential 5-year Emiss	Nonresider Meets Net-			
Development	Plan and Start Reductions	Multifamily Buildings Meet 5-year Emissions Targets*				

Additional Funding Assistance for Energy Efficient and/or Clean Energy Retrofits

. . . .

FUNDING OPPORTUNITIES | Inflation Reduction Act Elective Pay Eligible Tax Credits

Clean Energy Tax Incentives: Elective Pay Eligible Tax Credits

The Inflation Reduction Act of 2022 ("IRA") makes several clean energy tax credits available to businesses; tax-exempt organizations; state, local, and tribal governments; other entities; and individuals. The IRA also enables entities to take advantage of certain clean energy tax credits through its elective pay provision (also colloquially known as direct pay). Elective pay allows several types of entities, such as tax-exempts and governments, to treat the amount of certain credits as a payment against tax on their tax returns and as a result receive direct payments for certain clean energy tax credits.

Tax Provision

Description

Production Tax Credit for Electricity from Renewables (§ 45, pre-2025)	For production of electricity from eligible renewable sources, including we small irrigation, landfill and trash, hydropower, marine and hydrokinetic energy Credit Amount (for 2022): 0.55 cents/kilowatt (kW); (1/2 rate for electricity plandfill gas, and trash); 2.75 cents/kW if Prevailing Wage and Apprenticeship
Clean Electricity Production Tax Credit (§ 45Y, 2025 onwards)	Technology-neutral tax credit for production of clean electricity . Replace construction and are placed in service after 2024. Credit Amount: Starts in 2025, consistent with credit amounts under section
Investment Tax Credit for Energy Property (§ 48, pre-2025)	For investment in renewable energy projects including fuel cell, solar, geo biogas, microgrid controllers, and combined heat and power properties Credit Amount: 6% of qualified investment (basis); 30% if PWA requirement
Clean Electricity Investment Tax Credit (§ 48E, 2025 onwards)	Technology-neutral tax credit for investment in facilities that generate c storage technologies. Replaces § 48 for facilities that begin construction and Credit Amount: 6% of qualified investment (basis); 30% if PWA requirement
Low-Income Communities Bonus Credit (§ 48(e), 48E(h)) Application required	Additional investment tax credit for small-scale solar and wind (§ 48(e)) of ities (<5MW net output) on Indian land, federally subsidized housing, in low-low-income households. Allocated through an application process. Credit Amount: 10 or 20 percentage point increase on base investment tax
Credit for Carbon Oxide Sequestration (§ 45Q)	Credit for carbon dioxide sequestration coupled with permitted end uses Credit Amount: \$12-36 per metric ton of qualified carbon oxide captured ar injectant, or used, depending on the specified end use; \$60-\$180 per metric requirements met. ^{1,7}

Energy Generation & Carbon Capture

wind, biomass, geothermal, solar, gy.

produced from open loop biomass, (PWA) rules are met ^{1,2,3,7}

es § 45 for facilities that begin

n 45^{1,2,3,6,7}

othermal, small wind, energy storage,

ts met ^{1,4,5,6,8}

clean electricity and qualified energy d are placed in service after 2024 ats met 1,4,5,6

or clean electricity (§48E(h)) facilincome communities, and benefit

credit 7

in the United States.

nd sequestered, used as a tertiary ton if PWA

FUNDING ASSISTANCE Inflation Reduction Act – Investment Tax Credits

What is it?

Building owners who place in service energy efficient commercial building property (EECBP) or energy efficient commercial building retrofit property (EEBRP) may be able to claim a tax deduction.

Who gets it?

The deduction is available to owners of qualified commercial buildings and designers of energy efficiency systems installed in buildings owned by certain tax-exempt and government entities.

How much savings are available?

- \$0.50 per square foot for a building with 25% energy savings
- Additional \$0.02 per square foot for each percentage point of energy savings above 25%
- Maximum of \$1.00 per square foot for a building with 50% energy savings •
- If local prevailing wages are paid and apprenticeship requirements are met, • the deduction amount increases to 5 times the savings per square foot amount.

Savings compared to: ASHRAE Reference Standard 90.1-2019

Aligning Life Cycle Asset Management with Climate Mitigation Planning

0

.

Anyone have these systems in their buildings?

How about these systems?

How about these systems?

How about these....

How about these....

Think Lifecycle!

- Longevity?
- How to replace?
- Can I rebuild it?
- What is the total life cycle cost?

FCA Findings...MEP Deferred Maintenance

Deferred (Capital Renewal) is in the billions in Oregon alone...One University has a \$650M backlog

Fewer trades, different skillsets, less money

CRV Annually

APPA Facility Maintenance Investment Benchmark

Doesn't everyone allocate 3% per year for capital renewal?

- What are the maintenance requirements
- What is the system longevity ?

Sample Life Cycle Cost Analysis

30 Year LCC – In Present Worth

3,011	\$8,261,0	\$5	,713,(000	
l Cost		Fotal Own	Cost ersh	of ip	
5,623	\$8,261	,000			
2,612 Cost)	(\$2,54	8,000) Cos	st Add)	
.011	\$5,713	,000			

X2.3.2.1 Life cycle cost assessment on individual measures

How does CBA evaluate life cycle...

Investment Criteria Tool (Form F) Overview and

The Clean Buildings Performance Standards Annex X, Investment Criteria Tool (Form energy efficiency measures as identified by an ASHRAE Level 2 energy audit (WAC 19 of Normative Annex X (WAC 194-50-140). Use of this tool facilitates compliance doc Criteria Tool (Form F)(WAC 194-50-150).

This tool makes use of the Office of Financial Management's (OFM) LCCA tool. Input to facilitate populating OFM's tool. This ensures the analysis complies with NIST's I and Annex X in addition to documentation requirements of Annex Z.

X2.3.2.1 Life cycle cost assessment

Select Life Cycle Variables:

- Remaining useful life of existing systems
- Maintenance costs

Values Entered in Constant Dollar Values Based on Year	2024

Baseline - Code Minin	num or Like for Like Replacen	nent Schedule of Existing (Compone	ents Upgraded in	the Alte
Project Description					
Initial Cost(s) of Basel	ine (Including soft-costs of each	individual measure)	Impler	mentation Cost	Life (y
	Rebuild be	oilers	\$	4,000,000	10
		Subtotal	\$	4,000,000	
					1
Baseline Annual Maint	enance & Other Annual Non-Utili	ty Costs	\$	15,000	
					Period
Baseline Periodic Majo	Baseline Periodic Major Maintenance Expenses 10000				25
(Not Applied to ir	nitial construction year)				

X2.3.2.1 Life cycle cost assessment

Select Life Cycle Variables:

Installation costs

Form-F Capital Expenditures, Non-Utility Operating Expenses, and Incentives

Energy Efficient Alternative - Bundle of Energy Efficiency Measures Hard and Soft Costs

Project Description	Boiler replacem
Useful life of equipment for measure with longest life (years)	25
Study Period (years)	25

Cost of Implementing Bundle of Measures

Material costs:	Description	Amount (\$)
Longest Life Measure	15	\$ 1,500,000

Labor costs (contracted or executed by employees), one-time cost

		\$ 3,900,0	0
Site-specific in	stallation factors, one-time costs		

Estimate the total expected cost of implementation for each practical measure. Cost es

14. Any additional adjustments that significantly impact the cost estimate of the *EEM*.

ent v	vith heat p	ump
		Years of
	Life	Delay
0	25	
0		

X2.3.2.1 Life cycle cost assessment

Select Life Cycle Variables:

• Periodic Major Maintenance Requests

ASHRAE Equipment Life Expectancy chart							
ASHRAE is the ind	lustry organ For additio	ization that sets the standards and ground info about ASHRAE the websit	uidelines fo te is <u>www.a</u>	r most all HVAC-R equipment. shrae.org .			
Equipment Item	Median Years	Equipment Item	Median Years	Equipment Item	Median Years		
Air conditioners		Air terminals		Air-cooled condensers	20		
Window unit Residential single or Split Package	10 15	Diffusers, grilles, and registers Induction and fan coil units	s 27 20	Evaporative condensers	20		
Commercial through-the wall	15	vav and double-duct boxes	20	Insulation			
Water-cooled package	15	Air washers	17	Molded Blanket	20 24		
Heat Pumps		Ductwork	30	_			
Residential air-to-air Commercial air-to-air	15 15	Dampers	20	Pumps Base-mounted	20		
Commercial water-to-air	19	Fans		Pipe-mounted Sump and well	10 10		
Roof-top air conditioners	15	Centrifugal Axial	25 20	Condensate 15			

)	Life	
000,000	15	
000,000		

X2.3.2.2 Phased implementation. *building owner* is not required to replace a system or equipment before the end of the system's or equipment's useful life.

Life Cycle Cost Analysis				
Alternative	Baseline			Alt
1st Construction Costs	\$	-	\$	
PV of Capital Costs	\$	8,021,980	\$	
PV of Maintenance Costs	\$	415,247	\$	
PV of Utility Costs	\$	-	\$	
Total Life Cycle Cost (LCC)	\$	8,437,227	\$	
Net Present Savings (NPS)		N/A	\$	

Life Cycle Cost Analysis		BE		
Alternative	Baseline			
1st Construction Costs	\$ -	\$		
PV of Capital Costs	\$ 8,431,089	\$		
PV of Maintenance Costs	\$ 415,247	\$		
PV of Utility Costs	\$ -	\$		
Total Life Cycle Cost (LCC)	\$ 8,846,336	\$		
Net Present Savings (NPS)	N/A	\$		

Example 270k SFT Building

Total Energy Consumption

Space Heating 41%

Energy Usage	EUI
Current EUI	122.9
Target EUI	95.2
Target Reduction	27.7

Energy Audit – Review Building Equipment

Energy Audit – Review Systems Review Controls

Scenario Based Capital Planning

Identified ASHRAE EEMS						Ca
EEM ⊸î	Building	EEM Brief Description		A Brief Description		Scenario 2 - Minimum Compliance
EEM 01	New Courts	Replace AHU 1 & AHU 2 DX Cooling Coils with Modern Equivalent		2.60		
EEM-02	New Courts	RCx AHUs and Boiler Plant		2.61	Yes	Yes
EEM-03	New Jail	Multizone AHU Controls and Sequencing Upgrade		8.96	Yes	Yes
EEM-04	New Jail	Replace New Jail Chillers Add Heat Recovery		5.78		
EEM-05	New Jail	RCx CHW System and improve AHU-5 Cooling		0.46	Yes	Yes
EEM-06	New Jail	Optimize Kitchen HVAC		<mark>0.52</mark>	Yes	
EEM-07	New Jail	RCx Heating System		1.23	Yes	
EEM-08	All Buildings	Rooftop Photovoltaic	Rooftop Photovoltaic 11.33			Yes
EEM-09	All Buildings	Central Chilled Water System		5.90		
EEM 10	All Buildings	Heat pump conversion		22.01		
EEM-11	All Buildings	Controls Modernization		14.25		
EEM-12	All Buildings	Facility Wide Lighting Upgrades - Interior		3.73		
EEM-12	All Buildings	Facility Wide Lighting Upgrades - Exterior		0.39	Yes	
EEM-13	Old Courts/Jail	AHU-1 Modernization and Controls upgrade		8.10		
EEM-14	Old Courts/Jail	AHU-2 Replacement		7.27		
EEM-15	Old Courts/Jail	Replace Chillers		4.15		
EEM-16	All Buildings	Existing Controls Optimization		9.50	Yes	Yes

Energy Usage	EUI
Current EUI	122.9
Target EUI	95.2
Target Reduction	27.7

Capital Plan	Cost		Annual Utility Savings	EUI Reduction	Payback (Years)	CBA Compliance
Scenario 1 - Low Cost/Medium						
Cost	\$ 272,50) \$	58,560	23.68	4.65	No
Scenario 2 - Minimum						
Compliance	\$ 2,062,50) \$	122,988	32.86	16.77	Yes
Scenario 3 - AHU Replacement						
Focus	\$ 7,50) \$	1,229	0.46	6.10	No
Scenario 4 - Distributed Cooling	\$ 3,250,00) \$	15,693	9.93	207.09	No
Scenario 5 - Central Chilled						
Water	\$ 1,950,00) \$	69,403	11.33	28.10	No

51

Refine Phase

Project Criteria

2.3 Goals

The overarching goal of the central chilled water plant is to centralize the chilled water plant, reduce life cycle costs, reduce maintenance, reduce energy, and free up space in the old court sally port and parking lot. Metrics of success include:

- Reduce site wide EUI by a minimum of 5.9 KBTU/SF.YR ٠
- Provide infrastructure for a phased central chilled water plant starting with the Old Court/Old ٠ Jail.
- Return parking space to County currently utilized by mechanical equipment. ٠
- Minimize or eliminate chilled water outages and construction impact. ٠
- Provide a plant that can be expanded upon in future phases. ٠

3.2.4 Recommended Vendors

The following vendors are recommended for equipment procurement. The equipment described was used in developing the Basis of Design (BOD). Manufacturer cutsheets are provided in the Appendices for the recommended equipment for this project.

- Trane Sinstesis Air Cooled Chillers RTAF
- 2. Trane Ascend Air Cooled Chillers
- York YCAL Air Cooled Scroll Chiller.
- York YVAA Air Cooled Variable Speed Screw Chiller 4.
- Multistack MSS-M Water cooled MagLev Modular chiller 5.
- Multistack ACF_M Air-Cooled MagLev Chiller 6.

Execution Strategy

4.1.1 Procurement Strategy

The recommended procurement strategy for this project is either a Design-Bid-Build (DBB) or a General Contractor/Construction Manager (GC/CM) delivery method. Of paramount importance is the ability of the county to obtain a high quality design that will work across all phases.

Concept Design

Meeting Compliance Workflow

• June 1, 2027 - More than 90,000 sq. ft. but less

×

• June 1, 2028 - More than 50,000 sq. ft. but less

• July 1, 2027 - More than 20,000 sq. ft. but less

Please take a few minutes to use the evaluation form on the mobile app and provide your feedback on this session!

Evaluations help us select sessions for future conferences and provide valuable feedback for conference planners & speakers.

Thank you!

