

Modern Casting Design: Manhole Frames and Covers

David Wangerin

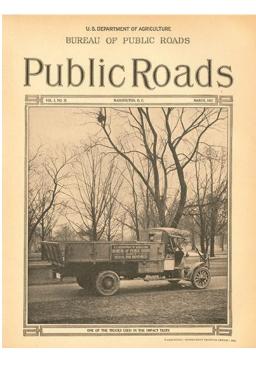
LEARNING OBJECTIVES

Objective 1

• Review current manhole frame and cover designs and specifications.

Objective 2

• Compare existing standards to modern casting design standards.

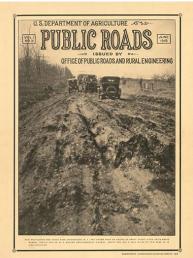

Objective 3

• Identify manhole frame and cover installations that require innovative or unique solutions.

History

- Like today, cast iron manhole frame and cover designs were based on:
 - Why the cover and frame was needed.
 - Where the cover and frame was installed.
 - How the cover and frame was installed.
 - What the cover and frame was installed over.
 - Who designed the cover and frame.
- Cast iron manhole frame and cover designs are still being used that predate "modern" road construction and design standards.
- Public Roads Vol. 3 Issue 35 March 1921
 - "When roads were built to carry the traffic of a few years ago they were built according to 'experience' and empirical rules, and the actual weight or speed of the load was only generally considered..... The transition from horse-drawn to automobile and truck traffic has changed the surface and strength requirements of a road."

- Like today, cast iron manhole frame and cover designs were based on:
 - Why the cover and frame was needed.
 - Where the cover and frame was installed.
 - How the cover and frame was installed.
 - What the cover and frame was installed over.
 - Who designed the cover and frame.
- Cast iron manhole frame and cover designs are still being used that predate "modern" road construction and design standards.
- Public Roads Vol. 3 Issue 35 March 1921
 - "When roads were built to carry the traffic of a few years ago they were built according to 'experience' and empirical rules, and the actual weight or speed of the load was only generally considered..... The transition from horse-drawn to automobile and truck traffic has changed the surface and strength requirements of a road."


APWA WA 😂 💧

- 1845 First Known Iron Manhole Covers installed in Brooklyn Heights, NY
 - Hyatt Cover, " Vault Light"
- 1870 First recorded use of liquid asphalt or bitumen in US roadway construction Newark
 - 1871 Asphalt Patent Nathan Abbott
- 1880 League of American Wheelmen founded.
- 1891 First concrete road "test strip" installed in Bellefontaine, OH
 - George Bartholomew, Buckeye Portland Cement Co.
 - 1893 US Office of Road Inquiry Launched
 - First incarnation of the Federal Highway Administration (FHWA)
 - 1904 Survey of American Roads
 - 2 million miles of rural roads
 - 154,000 miles gravel, stones, or other paving materials
 - 1908 Model T Production

APWA WA 😂 🔥

- 1914 1918 First World War
 - 1914, December 12 AASHO Formed
 - 16 States, American Association of State Highway Officials
- 1916 President Woodrow Wilson created Federal Aid Highway Program
- 1918 Induction Furnace Patent
- 1921 Federal Highway Act
 - Primary and Secondary Systems for funding
- 1930 First Modern Computer
- 1939 1945 World War II
- 1943 Keith Dwight Millis invents ductile iron
- 1944 AASHO H20 Loading defined
- 1956 President Dwight D. Eisenhower Federal-Aid

Highway Act of 1956

- 1961 Computer Aided Design (CAD) invented
- 1973 AASHO renamed to AASHTO

Modern Foundry – EJ, Ardmore, OK

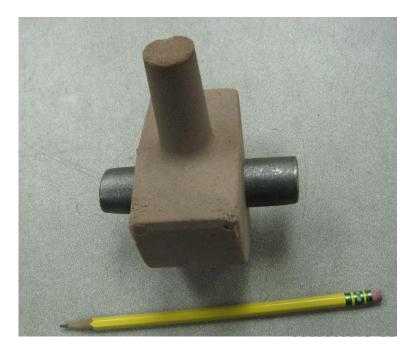
Pattern Setup

Cope and Drag

Product Molding

Cores

- Cores form parts of a casting that cannot be made with green sand.
- Manufacturing of cores is required prior to making green sand molds.



These cores are made using a Shell Core Process also known as a "Hot Box."

Cores

- Pick Bar Core Forms a recess while also holding a steel bar that is cast into covers.
- Cores are typically purchased from manufacturers that specialize in the core forming processes.

These cores are made using a "Cold Box" also known as Isocure, No-Bake or Air-Set.

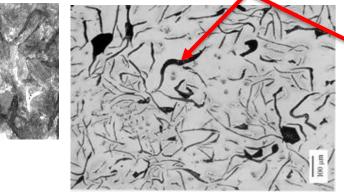
Cores

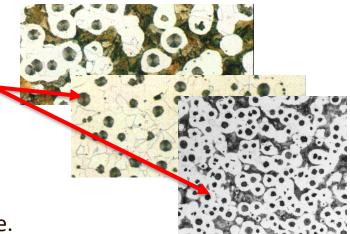
• All cores use specific types of sand and a resin binder to hold the sand grains together.

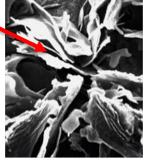
Cores are added to certain molds to create internal voids or areas of negative draft (overhang) in the casting.

Written Specification Considerations

Gray and Ductile Iron


Ductile (nodular) Iron


During solidification graphite solidifies in a ball or sphere within the iron matrix. Low Sulfur plus Magnesium changes the iron's surface tension as it cools, thus allowing for the graphite to ball up.


Gray (flake) Iron

During solidification graphite solidifies as a flake.

ASTM A48 Class 35B

Component Elements Properties	Metric	English
Carbon, C	3.25 - 3.5 %	3.25 - 3.5 %
Chromium, Cr	0.050 - 0.45 %	0.050 - 0.45 %
Copper, Cu	0.15 - 0.40 %	0.15 - 0.40 %
Iron, Fe	91.9 - 94.2 %	91.9 - 94.2 %
Manganese, Mn	0.50 - 0.90 %	0.50 - 0.90 %
Molybdenum, Mo	0.050 - 0.10 %	0.050 - 0.10 %
Nickel, Ni	0.050 - 0.20 %	0.050 - 0.20 %
Phosphorus, P	<= 0.12 %	<= 0.12 %
Silicon, Si	1.8 - 2.3 %	1.8 - 2.3 %
Sulfur, S	<= 0.15 %	<= 0.15 %

ASTM A536 80-55-06

Component Elements Properties	Metric	English
Carbon, C	3.6 - 3.8 %	3.6 - 3.8 %
Cerium, Ce	0.0050 - 0.20 %	0.0050 - 0.20 %
Chromium, Cr	0.030 - 0.070 %	0.030 - 0.070 %
Copper, Cu	0.15 - 1.0 %	0.15 - 1.0 %
Iron, Fe	90.738 - 94.175 %	90.738 - 94.175 %
Magnesium, Mg	0.030 - 0.060 %	0.030 - 0.060 %
Manganese, Mn	0.15 - 1.0 %	0.15 - 1.0 %
Molybdenum, Mo	0.010 - 0.10 %	0.010 - 0.10 %
Nickel, Ni	0.050 - 0.20 %	0.050 - 0.20 %
Phosphorus, P	<= 0.030 %	<= 0.030 %
Silicon, Si	1.8 - 2.8 %	1.8 - 2.8 %
Sulfur, S	<= 0.0020 %	<= 0.0020 %

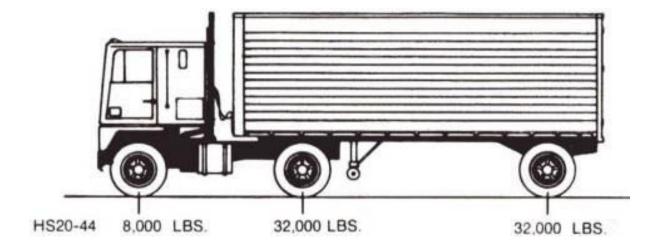
What does 80-55-06 mean?

- 80 Minimum Ultimate Tensile Strength
 - In this case 80 means 80,0000 lbs
- 55 Yield
 - This is when the material will start to deform, in this case 55,000 lbs.
- 06 Elongation
 - This is the percentage, in this case 6% that the material will deform/stretch before breaking
- This is different when compared against gray iron which has one number of 35 which is the Minimum Ultimate Tensile Strength of 35,000 lbs. Gray iron doesn't like to bend/deform.

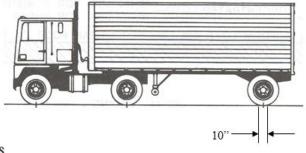
AASHTO H20 vs. AASHTO M306 H20

- Design Load vs. Proof Load
- H20 or H20-44 was published in 1944.
 - 16,000 lb load applied on a 10" x 20" contact area.
- M306 H20 was originally published in 1989.
 - Applies a 2.5x safety factor to design load for final 40,000 lb proof load.

– Load is applied on a 9" x 9" contact area.

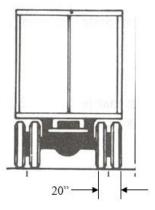

H-20

HS-20


These sketches illustrate the AASHTO-approved live loading specifications for standard H20 and HS20 trucks. Source: AASHTO Standard Specifications for Highway Bridges.

Standard HS Truck (Tractor Trailer)

10" x 20" Contact Area



HIGHWAY BRIDGES

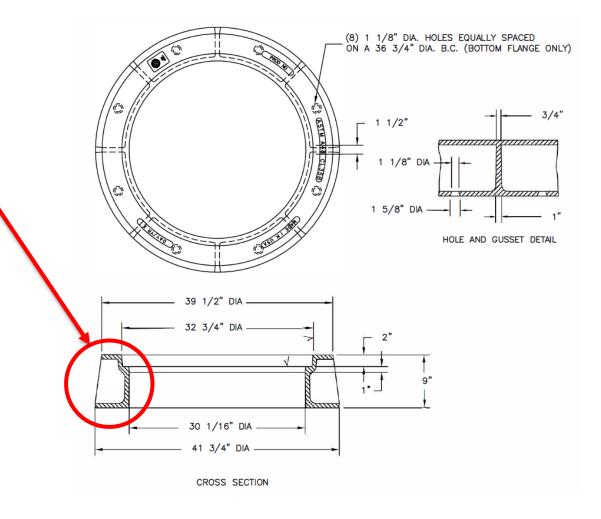
3.30 TIRE CONTACT AREA

42

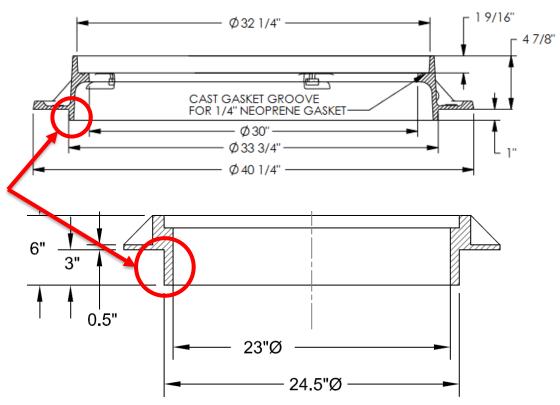
The tire contact area for the Alternate Military Loading or HS 20-44 shall be assumed as a rectangle with a length in the direction of traffic of 10 inches, and a width of tire of 20 inches. For other design vehicles, the tire contact should be determined by the engineer.

AASHTO M306 specification summary

- AASHTO M306 is published by The American Association of State Highway and Transportation Officials (AASHTO). It is one of the most trusted and respected specification bodies in the United States.
- AASHTO M306 originally published in 1989, important revisions in 2004, 2007, 2010 and latest revision 2016.
- It is the most up to date specification currently published, with all aspects of casting quality addressed.

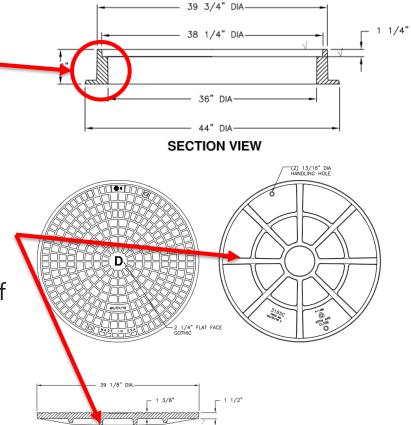

Examples of Current Casting Standards

Double Flange or "C" Channel


- Includes any frame with outside diameter negative draft.
- Initially used with loose or semi-rigid materials.
- One of the oldest castiron frame designs.
- Requires the use of radial "ring" cores during molding.

Mud Ring

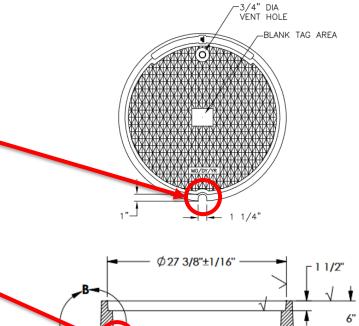
- Name comes from the excessive amount of mortar/grout used at the top of the brick manhole.
- Originally designed for centering on brick manhole structures.
- Functioned as a "keystone" for tapered brick structures.
- One of the oldest cast-iron frame features.


Straight Wall or Flat Face

 Cover Seat does not have a ledge and is supported by solid iron below the seat.

Radial Rib

- Benefits Ductile Iron cover design.
- Unstable when resting on the underside of the cover.
- Based on historical construction design rather than an analysis of material properties.



Open Pick Slot

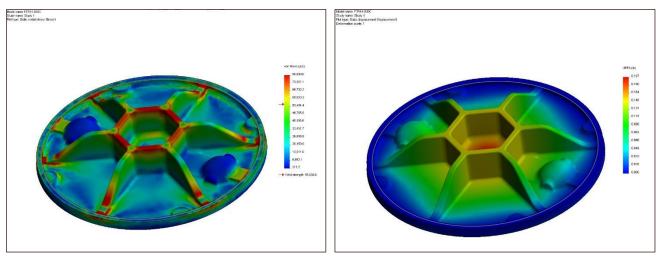
 Requires placing hands between cover and frame during removal.

Inner Flange or Secondary Seat

- Used for catch pans or pressure plates.

- Ø24" -Ø32 1/2

Modern Casting Designs



Standards and Specifications

 Modern Design and/or Innovative products must perform as well or better than the products being replaced

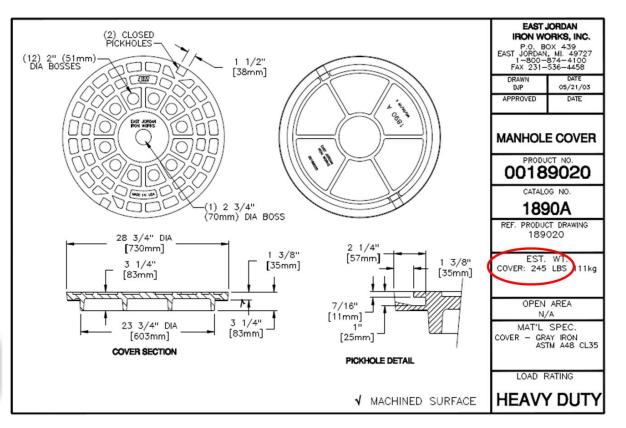
Finite Element Analysis (FEA)

Model FTR14-930C Static nodal stress Model FTR14-930C Static displacement

Modern Design

MODERN COVER DESIGNS

Platen design for Gray Iron.


Ribbed design for Ductile Iron.

Modern Design Profile Comparison

Historical Version Design

Historical Design Loading

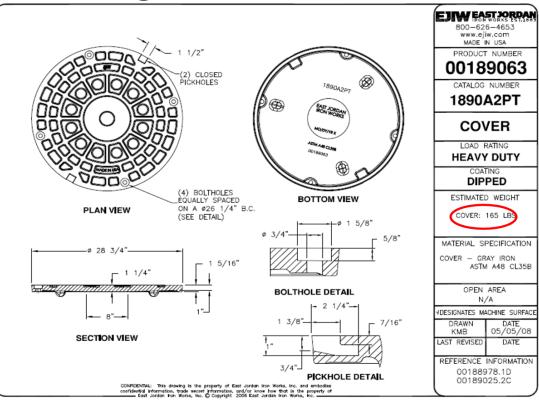
Standard Proof Load Test - Data Entry Screen

Date of test :	08/20/92			
Tested by:	TRI			

Tested by: Distribution:

Produ Descr Mater Produ Cover

Grate being tested		Frame used for test :
00189020	Product#	1890Z
1890A SOLID COVER W/ CPHO		
Gray Iron	Material	
EAST JORDAN	Production Location	
230	Frame Weight	
	Cast Date	
	Number of Bars Supporting Load i	if No Frame
	00189020 1890A SOLID COVER W/ CPHO Gray Iron EAST JORDAN	00189020 Product# 1890A SOLID COVER W/ CPHO Material Gray Iron Material EAST JORDAN Production Location 230 Frame Weight Cast Date


Amount of Load Applied Without Failure for 1 minute	510	PSI	40,055 Lbs
Unit Cracked or failed at	800	PSI	62,832 Lbs
1/8* Permanent Deformation		PSI	Lbs
1/4* Permanent Deformation		PSI	Lbs
Unit Destructed at		PSI	Lbs
Load Rating for this test :	HEAVY DUTY		

Picture:

APWA WA 😂

Modern Design

Modern Design Loading

Standard Proof Load Test - Data Entry Screen

DAL

Date of test: 02/02/2010

Tested by:

Comments: 00189063.pdf

Distribution :

Cover or	r Grate being tested :	Fran	ne used for test :
Product#	00189063	Product#	00189014
Description	1890A2P1 CV		
laterial	Gray Iron	Material	Gray Iron
roduction Location	ARDMORE	Production Location	ARDMORE
Cover/Grate Weight	170	Frame Weight	174
Cast Date	05/22/2008	Cast Date	01/25/2010
		Number of Bars Supporting Load if No	Frame
	Without Failure for 1 minute	PSI	40,000 Lbs
Unit Cracked or failed at		PSI	103,220 Lbs
			— (
Unit Cracked or failed at 1/8" Permanent Deformat 1/4" Permanent Deformat	tion	PSI	103,220 Lbs
1/8" Permanent Deformat	tion	PSI	103,220 Lbs

City of Houston Casting Designs

Traditional Design Frame & Cover		Modern Design Frame & Cover	
	Heavy ribs were removed, and the end result was the modern design, weighing 78 pounds less and withstanding higher traffic load ratings.		
275 lbs.		197 lbs.	
245 lbs.		125 lbs.	
	The traditional mud ring added unnecessary weight to the manhole frame, and has been removed in the modern design.		
Assembled weight = 520 lbs.		Assembled weight = 322 lbs.	
Proof Load Exceeds H-20 / H-25		Proof Load Exceeds AASHTO M 306	

Modern Design

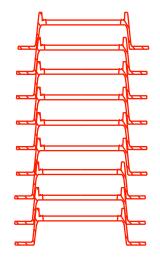
	Weight (lbs.)								
Clear Open	24"		27"		30"		36"		
Design	Std.	Mod.	Std.	Mod.	Std.	Mod.	Std.	Mod.	
Cover	175	138	230	183	305	234	440	340	
Frame	260	126	280	135	320	145	370	165	
Assembly	435	264	510	318	625	379	810	505	
% Reduction	39.3%		37.6%		39	.4%	37.7%		

Modern Design – Ductile Iron

	Weight (lbs.)										
Clear Open	2	24" 27" 30" 36"									
Design	Std.	Mod.	Std.	Mod.	DI	Std.	Mod.	DI	Std.	Mod.	DI
Cover	175	138	230	183	142	305	234	161	440	340	241
Frame	260	126	280	135	N/A	320	145	N/A	370	165	N/A
Assembly	435	264	510	318	277	625	379	306	810	505	406

39.3% 37.6% - 46% 39.4% - 51% 37.7% - 50%

% Reduction


Modern Design - Performance

	Loading (lbs.) (in accordance to AASHTO M306 H20)							
Clear Open	24" 27" 30" 36"							
Standard	69,912	70,486	77,853	75,006				
Modern	66,759	82,467	90,321	113,430				

Additional Benefits – Safety, Handling and Logistics

- Transportation Example
 - Standard Design 64 Assemblies = 13 Pallets
 - Optimized Design 105 Assemblies = 13 Pallets
- Stackability (Nesting)
 - Reduces area required for storage at facilities and job sites
 - Improved stability during shipping and handling
 - Reduced damage from shipping and handling
 - Improved safety from accidental shifting or collapse

Additional Benefits – Safety, Handling and Logistics

- Reduction in weight improves ergonomics
 - Reduction in workplace/lost time injuries
 - Private Contractors
 - Maintenance
 - Inspectors
- Opportunity to improve design elements
 - Size, shape and type of pick slots
 - Infiltration
 - Locking options

Additional Benefits – Opportunity

- <u>Modernization of existing designs</u> requires interchangeability with existing infrastructure
- Opportunity to improve design elements
 - Size, shape and type of pick slots
 - Infiltration
 - Locking options

Application Specific Solutions

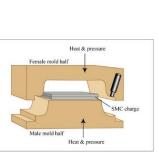
Elevated Structures

- Pivoting Manhole Covers
 - Ease of operation
 - Heavy equipment not required
 - Can be installed in difficult to access areas
- Composite Manhole Covers
 and Frames
 - Lightweight
 - Resistant to H2S derived corrosion

Composite Manhole Covers and Frames

- Understanding Methods of Manufacturing
 - BMC/SMC/RIM or RTM
- Resistant to H2S derived corrosion
- Same Loading requirements as Iron Covers and Frames
- Additional requirements:
 - First published Regional Standard

Greenbook Standard Specifications for Public Works Construction 2024 Section 206.7


Composite Methods of Manufacture

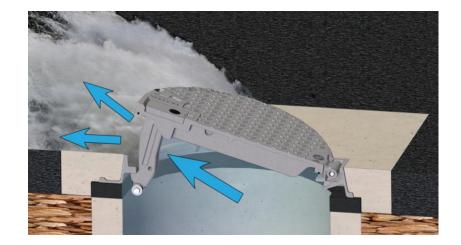
Compression Molding

BMC

50

SMC

Injection Molding



Cover Displacement

- Internal pressure controlled release
- Explosion mitigation

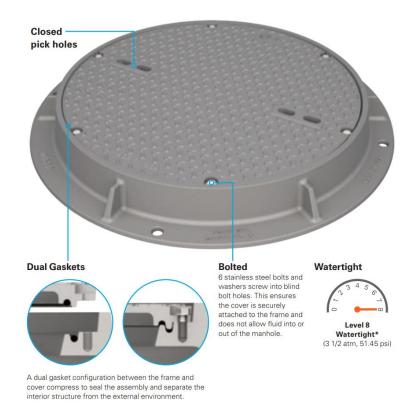
Locking Options

- Standard Bolting
- Security Bolting
- Cam Locks
 - Improved security
 - Eliminates loose and missing fasteners
 - Captive Wrench

Rehabilitation and Multi-Stage Projects

- Adjustable Manhole Covers and Frames
 - Designed to allow upper frame to move with the environment (frost or hydraulic upheaval)
 - Installation up to 5° slopes
 - Wide range of installation heights, easy installation

Hinged Units


- Captive vs Removable
- Hinge pocket
- Infiltration
- Lift Assist

Infiltration

- Installation Location
- Water Resistant Covers
 - Why not "Waterproof?"
- Cushion/Sealing Materials
 - Structure degradation

Thank you for attending.

ANK YOU

Contact Information: ph: 713.253.6874 email: david.wangerin@ejco.com twitter: @EJ_TechSales web: www.ejco.com